Search results
Results from the WOW.Com Content Network
The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1 / 2 × 2πr × r, holds for a circle.
Similarly, a comparison can be made between the perimeter of the shape and that of its convex hull, [3] its bounding circle, [1] or a circle having the same area. [ 1 ] Other tests involve determining how much area overlaps with a circle of the same area [ 2 ] or a reflection of the shape itself.
A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden.
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r, it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to ...
The circle is the shape with the largest area for a given length of perimeter (see Isoperimetric inequality). The circle is a highly symmetric shape: every line through the centre forms a line of reflection symmetry , and it has rotational symmetry around the centre for every angle.
The circumference of a circle is the distance around it, but if, as in many elementary treatments, distance is defined in terms of straight lines, this cannot be used as a definition. Under these circumstances, the circumference of a circle may be defined as the limit of the perimeters of inscribed regular polygons as the number of sides ...
Roundness = Perimeter 2 / 4 π × Area . This ratio will be 1 for a circle and greater than 1 for non-circular shapes. Another definition is the inverse of that: Roundness = 4 π × Area / Perimeter 2 , which is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes.
When the outer Soddy circle has positive curvature, both Soddy centers are equal detour points. When the outer Soddy circle has negative curvature, its center is the isoperimetric point: the triangles ABP 2, BCP 2, and CAP 2 have equal perimeter. In geometry, the Soddy circles of a triangle are two circles associated with any triangle in the