Search results
Results from the WOW.Com Content Network
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all other assignments of logical values to p and to q the conjunction p ∧ q is false. It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [75] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [51]
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
In Boolean logic, logical NOR, [1] non-disjunction, or joint denial [1] is a truth-functional operator which produces a result that is the negation of logical or.That is, a sentence of the form (p NOR q) is true precisely when neither p nor q is true—i.e. when both p and q are false.
In the abstract (ideal) case the simplest oscillating formula is a NOT fed back to itself: ~(~(p=q)) = q. Analysis of an abstract (ideal) propositional formula in a truth-table reveals an inconsistency for both p=1 and p=0 cases: When p=1, q=0, this cannot be because p=q; ditto for when p=0 and q=1.
In mathematics and mathematical logic, Boolean algebra is a branch of algebra.It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers.
Another example is the function f(x) = |x| on the interval [−1, 1], for which the interpolating polynomials do not even converge pointwise except at the three points x = ±1, 0. [13] One might think that better convergence properties may be obtained by choosing different interpolation nodes.
In writing, phrases commonly used as alternatives to P "if and only if" Q include: Q is necessary and sufficient for P, for P it is necessary and sufficient that Q, P is equivalent (or materially equivalent) to Q (compare with material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. [3]