enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic radiation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_radiation

    Frequency is inversely proportional to wavelength, according to the equation: [26] = where v is the speed of the wave (c in a vacuum or less in other media), f is the frequency and λ is the wavelength. As waves cross boundaries between different media, their speeds change but their frequencies remain constant.

  3. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    where ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular frequency of the wave, and v p is the phase velocity of the wave. The dependence of the wavenumber on the frequency (or more commonly the frequency on the wavenumber) is known as a dispersion relation.

  4. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms. Throughout most of the electromagnetic spectrum, spectroscopy can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength ...

  5. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that light in vacuum.

  6. Phase velocity - Wikipedia

    en.wikipedia.org/wiki/Phase_velocity

    In the context of electromagnetics and optics, the frequency is some function ω(k) of the wave number, so in general, the phase velocity and the group velocity depend on specific medium and frequency. The ratio between the speed of light c and the phase velocity v p is known as the refractive index, n = c / v p = ck / ω.

  7. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. [3] [4] The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal.

  8. Spectral resolution - Wikipedia

    en.wikipedia.org/wiki/Spectral_resolution

    The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum.It is usually denoted by , and is closely related to the resolving power of the spectrograph, defined as =, where is the smallest difference in wavelengths that can be distinguished at a wavelength of .

  9. Longitudinal mode - Wikipedia

    en.wikipedia.org/wiki/Longitudinal_mode

    The frequency separation between any two adjacent modes, q and q+1, in a material that is transparent at the laser wavelength, are given (for an empty linear resonator of length L) by Δν: = where c is the speed of light and n is the refractive index of the material (note: n≈1 in air).