Search results
Results from the WOW.Com Content Network
Reaction mechanism for the bromination of acetone while in the presence of acetic acid. Basic (in aqueous NaOH): Reaction mechanism for the bromination of acetone while in the presence of aqueous NaOH. In acidic solution, usually only one alpha hydrogen is replaced by a halogen, as each successive halogenation is slower than the first.
The photo-Favorskii reaction has been used in the photochemical unlocking of certain phosphates (for instance those of ATP) protected by p-hydroxyphenacyl groups. [13] The deprotection proceeds through a triplet diradical ( 3 ) and a dione spiro intermediate ( 4 ) although the latter has thus far eluded detection.
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
As with all ketones, acetone enolizes in the presence of acids or bases. The alpha carbon then undergoes electrophilic substitution with bromine. The main difficulty with this method is over-bromination, resulting in di- and tribrominated products. If a base is present, bromoform is obtained instead, by the haloform reaction. [5]
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Since, aldehydes reduce more easily than ketones, they require milder reagents and milder conditions. At the other extreme, carboxylic acids, amides, and esters are poorly electrophilic and require strong reducing agents. [17] The idealized equation for the reduction of a ketone by sodium borohydride is: 4 RCOR' + NaBH 4 → NaB(OCHRR') 4
The reaction is much slower with ketones than aldehydes. [42] For example, in Nicolaou's epothilones synthesis, asymmetric allylboration (with an allylborane derived from chiral alpha-pinene ) is the first step in a two-carbon homologation to acetogenin : [ 43 ]
The Favorskii reaction is an organic chemistry reaction between an alkyne and a carbonyl group, under basic conditions. The reaction was discovered in the early 1900s by the Russian chemist Alexei Yevgrafovich Favorskii. [1] Favorskii reaction and the possible subsequent rearrangement