Search results
Results from the WOW.Com Content Network
Signed binary angle measurement. Black is traditional degrees representation, green is a BAM as a decimal number and red is hexadecimal 32-bit BAM. In this figure the 32-bit binary integers are interpreted as signed binary fixed-point values with scaling factor 2 −31, representing fractions between −1.0 (inclusive) and +1.0 (exclusive).
For example, you might use a prefix of 0x when converting to hex, or a suffix of <sub>8</sub> when converting to octal. From templates In wikimarkup, this module may be called with a function name n to m , e.g.:
In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .
In the example below, the divisor is 101 2, or 5 in decimal, while the dividend is 11011 2, or 27 in decimal. The procedure is the same as that of decimal long division ; here, the divisor 101 2 goes into the first three digits 110 2 of the dividend one time, so a "1" is written on the top line.
The reflected binary code (RBC), also known as reflected binary (RB) or Gray code after Frank Gray, is an ordering of the binary numeral system such that two successive values differ in only one bit (binary digit). For example, the representation of the decimal value "1" in binary would normally be "001" and "2" would be "010".
If errors in representation and computation are more important than the speed of conversion to and from display, a scaled binary representation may be used, which stores a decimal number as a binary-encoded integer and a binary-encoded signed decimal exponent. For example, 0.2 can be represented as 2 × 10 −1.
Binary-coded decimal (BCD) is a binary encoded representation of integer values that uses a 4-bit nibble to encode decimal digits. Four binary bits can encode up to 16 distinct values; but, in BCD-encoded numbers, only ten values in each nibble are legal, and encode the decimal digits zero, through nine.
For example, in an eight-bit byte, only seven bits represent the magnitude, which can range from 0000000 (0) to 1111111 (127). Thus numbers ranging from −127 10 to +127 10 can be represented once the sign bit (the eighth bit) is added. For example, −43 10 encoded in an eight-bit byte is 10101011 while 43 10 is 00101011.