Search results
Results from the WOW.Com Content Network
The solutions of the quadratic equation ax 2 + bx + c = 0 correspond to the roots of the function f(x) = ax 2 + bx + c, since they are the values of x for which f(x) = 0. If a, b, and c are real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-coordinates of the points where the graph touches the x-axis.
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
For univariate polynomials over the rationals (or more generally over a field of characteristic zero), Yun's algorithm exploits this to efficiently factorize the polynomial into square-free factors, that is, factors that are not a multiple of a square, performing a sequence of GCD computations starting with gcd(f(x), f '(x)). To factorize the ...
In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method.The word FOIL is an acronym for the four terms of the product:
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.
The discriminant of the quartic polynomial x 4 + cx 2 + dx + e. The surface represents points (c, d, e) where the polynomial has a repeated root. The cuspidal edge corresponds to the polynomials with a triple root, and the self-intersection corresponds to the polynomials with two different repeated roots.
It follows that, to compute in a finite field of non prime order, one needs to generate an irreducible polynomial. For this, the common method is to take a polynomial at random and test it for irreducibility. For sake of efficiency of the multiplication in the field, it is usual to search for polynomials of the shape x n + ax + b. [citation ...