enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...

  3. Transient response - Wikipedia

    en.wikipedia.org/wiki/Transient_response

    Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt ...

  4. Campbell diagram - Wikipedia

    en.wikipedia.org/wiki/Campbell_diagram

    Analysis shows that there are well-damped critical speed at lower speed range. Another critical speed at mode 4 is observed at 7810 rpm (130 Hz) in dangerous vicinity of nominal shaft speed, but it has 30% damping - enough to safely ignore it. Analytically computed values of eigenfrequencies as a function of the shaft's rotation speed.

  5. Phase portrait - Wikipedia

    en.wikipedia.org/wiki/Phase_portrait

    Phase portrait of damped oscillator, with increasing damping strength. The equation of motion is x ¨ + 2 γ x ˙ + ω 2 x = 0. {\displaystyle {\ddot {x}}+2\gamma {\dot {x}}+\omega ^{2}x=0.} In mathematics , a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane .

  6. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    The underdamped response is a decaying oscillation at frequency ω d. The oscillation decays at a rate determined by the attenuation α. The exponential in α describes the envelope of the oscillation. B 1 and B 2 (or B 3 and the phase shift φ in the second form) are arbitrary constants determined by boundary conditions. The frequency ω d is ...

  7. Van der Pol oscillator - Wikipedia

    en.wikipedia.org/wiki/Van_der_Pol_oscillator

    The Van der Pol oscillator was originally proposed by the Dutch electrical engineer and physicist Balthasar van der Pol while he was working at Philips. [2] Van der Pol found stable oscillations, [3] which he subsequently called relaxation-oscillations [4] and are now known as a type of limit cycle, in electrical circuits employing vacuum tubes.

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:

  9. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    This plot corresponds to solutions of the complete Langevin equation for a lightly damped harmonic oscillator, obtained using the Euler–Maruyama method. The left panel shows the time evolution of the phase portrait at different temperatures. The right panel captures the corresponding equilibrium probability distributions.