enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and leaf) has depth and height zero. Conventionally, an empty tree (tree with no nodes, if such are allowed) has height −1.

  3. Shortest-path tree - Wikipedia

    en.wikipedia.org/wiki/Shortest-path_tree

    Construct the shortest-path tree using the edges between each node and its parent. The above algorithm guarantees the existence of shortest-path trees. Like minimum spanning trees, shortest-path trees in general are not unique. In graphs for which all edge weights are equal, shortest path trees coincide with breadth-first search trees.

  4. Level ancestor problem - Wikipedia

    en.wikipedia.org/wiki/Level_ancestor_problem

    The level ancestor query LA(v,d) requests the ancestor of node v at depth d, where the depth of a node v in a tree is the number of edges on the shortest path from the root of the tree to node v. It is possible to solve this problem in constant time per query, after a preprocessing algorithm that takes O( n ) and that builds a data structure ...

  5. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    A caterpillar tree is a tree in which all vertices are within distance 1 of a central path subgraph. A lobster tree is a tree in which all vertices are within distance 2 of a central path subgraph. A regular tree of degree d is the infinite tree with d edges at each vertex. These arise as the Cayley graphs of free groups, and in the theory of ...

  6. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.

  7. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possible goals. This is a necessary trade-off for using a specific-goal-directed heuristic. For Dijkstra's algorithm, since the entire shortest-path tree is ...

  8. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  9. Floyd–Warshall algorithm - Wikipedia

    en.wikipedia.org/wiki/Floyd–Warshall_algorithm

    The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...