enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Definitions based on the idea of a bounding surface rather than a solid are also common. [8] For instance, O'Rourke (1993) defines a polyhedron as a union of convex polygons (its faces), arranged in space so that the intersection of any two polygons is a shared vertex or edge or the empty set and so that their union is a manifold. [9]

  3. Polytope - Wikipedia

    en.wikipedia.org/wiki/Polytope

    A polygon is a 2-dimensional polytope. Polygons can be characterised according to various criteria. Some examples are: open (excluding its boundary), bounding circuit only (ignoring its interior), closed (including both its boundary and its interior), and self-intersecting with varying densities of different regions.

  4. List of polygons, polyhedra and polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons...

    Regular polyhedron. Platonic solid: Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot polyhedron (Regular star polyhedra) Small stellated dodecahedron, Great stellated dodecahedron, Great icosahedron, Great dodecahedron; Abstract regular polyhedra (Projective polyhedron)

  5. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    In elementary geometry, a face is a polygon [note 1] on the boundary of a polyhedron. [3] [4] Other names for a polygonal face include polyhedron side and Euclidean plane tile. For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope.

  6. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    In classical contexts, many different equivalent definitions are used; a common one is that the faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form { n , m }, where n is the number of sides of each face and m the number of faces ...

  7. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  8. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent . Uniform polyhedra may be regular (if also face- and edge-transitive ), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular ...

  9. N-dimensional polyhedron - Wikipedia

    en.wikipedia.org/wiki/N-dimensional_polyhedron

    An n-dimensional polyhedron is a geometric object that generalizes the 3-dimensional polyhedron to an n-dimensional space. It is defined as a set of points in real affine (or Euclidean) space of any dimension n, that has flat sides. It may alternatively be defined as the intersection of finitely many half-spaces. Unlike a 3-dimensional ...