Search results
Results from the WOW.Com Content Network
In this case H 0 and H − are equivalent to pH values determined by the buffer equation or Henderson-Hasselbalch equation. However, an H 0 value of −21 (a 25% solution of SbF 5 in HSO 3 F) [5] does not imply a hydrogen ion concentration of 10 21 mol/dm 3: such a "solution" would have a density more than a hundred times greater than a neutron ...
For example, if the concentration of the conjugate base is 10 times greater than the concentration of the acid, their ratio is 10:1, and consequently the pH is pK a + 1 or pK b + 1. Conversely, if a 10-fold excess of the acid occurs with respect to the base, the ratio is 1:10 and the pH is pK a − 1 or pK b − 1.
Alkalinity roughly refers to the molar amount of bases in a solution that can be converted to uncharged species by a strong acid. For example, 1 mole of HCO − 3 in solution represents 1 molar equivalent, while 1 mole of CO 2− 3 is 2 molar equivalents because twice as many H + ions would be necessary to balance the charge.
The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles of base would neutralize each other according to the chemical reaction.
acid + base → salt + water. For example: HCl + NaOH → NaCl + H 2 O. Acidimetry is the specialized analytical use of acid-base titration to determine the concentration of a basic (alkaline) substance using standard acid. This can be used for weak bases and strong bases. [8] An example of an acidimetric titration involving a strong base is as ...
An equivalent (symbol: officially equiv; [1] unofficially but often Eq [2]) is the amount of a substance that reacts with (or is equivalent to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an archaic quantity that was used in chemistry and the biological sciences (see Equivalent weight § In ...
Normality can be used for acid-base titrations. For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be ...
On this scale, pure H 2 SO 4 (18.4 M) has a H 0 value of −12, and pyrosulfuric acid has H 0 ~ −15. [7] Take note that the Hammett acidity function clearly avoids water in its equation. It is a generalization of the pH scale—in a dilute aqueous solution (where B is H 2 O), pH is very nearly equal to H 0.