enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU. CuPy supports Nvidia CUDA GPU platform, and AMD ROCm GPU platform starting in v9.0. [4] [5] CuPy has been initially developed as a backend of Chainer deep learning framework, and later established as an independent project in ...

  3. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA provides both a low level API (CUDA Driver API, non single-source) and a higher level API (CUDA Runtime API, single-source). The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0, [18] which supersedes the beta released February 14, 2008. [19]

  4. List of finite element software packages - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_element...

    matrix-free save memory: Yes No Yes matrix-free speed-up: Yes No Yes Used language: Native language: Primarily C++ and Java C++ C++ C++ Fortran (2008 standard) C++ C++ Matlab / Octave Bindings to language: Full API for Java and Matlab (the latter via add-on product) PyMFEM (Python) Python, Scilab or Matlab Python bindings to some functionality

  5. Kaggle - Wikipedia

    en.wikipedia.org/wiki/Kaggle

    Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.

  6. rCUDA - Wikipedia

    en.wikipedia.org/wiki/RCUDA

    rCUDA, which stands for Remote CUDA, is a type of middleware software framework for remote GPU virtualization. Fully compatible with the CUDA application programming interface ( API ), it allows the allocation of one or more CUDA-enabled GPUs to a single application.

  7. Nvidia CUDA Compiler - Wikipedia

    en.wikipedia.org/wiki/Nvidia_CUDA_Compiler

    CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.

  8. Hopper (microarchitecture) - Wikipedia

    en.wikipedia.org/wiki/Hopper_(microarchitecture)

    Hopper allows CUDA compute kernels to utilize automatic inline compression, including in individual memory allocation, which allows accessing memory at higher bandwidth. This feature does not increase the amount of memory available to the application, because the data (and thus its compressibility ) may be changed at any time.

  9. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms.