enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  3. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...

  4. Desmos - Wikipedia

    en.wikipedia.org/wiki/Desmos

    Some 50 employees joined Amplify. Desmos Studio was spun off as a separate public benefit corporation focused on building calculator products and other math tools. [7] In May 2023, Desmos released a beta for a remade Geometry Tool. In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra ...

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A vector field is a vector-valued function that, generally, has a domain of the same dimension (as a manifold) as its codomain, Conservative vector field, a vector field that is the gradient of a scalar potential field; Hamiltonian vector field, a vector field defined for any energy function or Hamiltonian

  6. Field line - Wikipedia

    en.wikipedia.org/wiki/Field_line

    A vector field defines a direction and magnitude at each point in space. A field line is an integral curve for that vector field and may be constructed by starting at a point and tracing a line through space that follows the direction of the vector field, by making the field line tangent to the field vector at each point.

  7. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F. If a given vector field is Lipschitz continuous, then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.

  8. Plot (graphics) - Wikipedia

    en.wikipedia.org/wiki/Plot_(graphics)

    Very complex graph: the psychrometric chart, relating temperature, pressure, humidity, and other quantities. Non-rectangular coordinates: the above all use two-dimensional rectangular coordinates ; an example of a graph using polar coordinates , sometimes in three dimensions, is the antenna radiation pattern chart, which represents the power ...

  9. Dot product representation of a graph - Wikipedia

    en.wikipedia.org/wiki/Dot_product_representation...

    Let G be a graph with vertex set V. Let F be a field, and f a function from V to F k such that xy is an edge of G if and only if f(x)·f(y) ≥ t. This is the dot product representation of G. The number t is called the dot product threshold, and the smallest possible value of k is called the dot product dimension. [1]