Search results
Results from the WOW.Com Content Network
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
The simplest of these is called elliptic geometry and it is considered a non-Euclidean geometry due to its lack of parallel lines. [12] By formulating the geometry in terms of a curvature tensor, Riemann allowed non-Euclidean geometry to apply to higher dimensions. Beltrami (1868) was the first to apply Riemann's geometry to spaces of negative ...
Advocates of the position that Euclidean geometry is the one and only "true" geometry received a setback when, in a memoir published in 1868, "Fundamental theory of spaces of constant curvature", [76] Eugenio Beltrami gave an abstract proof of equiconsistency of hyperbolic and Euclidean geometry for any dimension.
Egyptian geometry; Ancient Greek geometry Euclidean geometry. Pythagorean theorem; Euclid's Elements; Measurement of a Circle; Indian mathematics. Bakhshali manuscript; Modern geometry History of analytic geometry. History of the Cartesian coordinate system; History of non-Euclidean geometry; History of topology; History of algebraic geometry ...
There arises the question of reading the Erlangen program from the abstract group, to the geometry. One example: oriented (i.e., reflections not included) elliptic geometry (i.e., the surface of an n-sphere with opposite points identified) and oriented spherical geometry (the same non-Euclidean geometry, but with opposite points not identified ...
Journey into Geometries is a book on non-Euclidean geometry. It was written by Hungarian-Australian mathematician Márta Svéd and published in 1991 by the Mathematical Association of America in their MAA Spectrum book series.
Congruence, two binary relations, one linking line segments and one linking angles, each denoted by an infix ≅. Line segments, angles, and triangles may each be defined in terms of points and straight lines, using the relations of betweenness and containment.
The program proposed a unified system of geometry that has become the accepted modern method. Klein showed how the essential properties of a given geometry could be represented by the group of transformations that preserve those properties. Thus the program's definition of geometry encompassed both Euclidean and non-Euclidean geometry.