Search results
Results from the WOW.Com Content Network
Dextran is a complex branched glucan (polysaccharide derived from the condensation of glucose), originally derived from wine. IUPAC defines dextrans as "Branched poly-α-d-glucosides of microbial origin having glycosidic bonds predominantly C-1 → C-6". [ 1 ]
The collected fractions are often examined by spectroscopic techniques to determine the concentration of the particles eluted. Common spectroscopy detection techniques are refractive index (RI) and ultraviolet (UV). When eluting spectroscopically similar species (such as during biological purification), other techniques may be necessary to ...
Acetalated dextran's degradation time can vary from hours to a month or more at pH 7.2. [4] [5] [6] Also, acetalated dextran is unique because it is acid sensitive. Therefore, at lower pH acetalated dextran degrades more rapidly, which results in a polymer that degrades approximately two logs faster at pH 5 compared to pH 7.
Sephadex is a cross-linked dextran gel used for gel filtration. It was launched by Pharmacia in 1959, after development work by Jerker Porath and Per Flodin. [1] [2] The name is derived from separation Pharmacia dextran. It is normally manufactured in a bead form and most commonly used for gel filtration columns. By varying the degree of cross ...
[1] [2] Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run.
Dextran has many favorable properties that make it an ideal candidate for applications as a drug delivery system. As a natural polymer, dextran is biocompatible and biodegradable in the human body. Dextran can also be chemically modified to produce derivatives at a low cost, which can address a few of the undesirable characteristics including ...
An example of a hapten inhibitor is dextran 1, which is a small fraction (1 kilodalton) of the entire dextran complex, which is enough to bind anti-dextran antibodies, but insufficient to result in the formation of immune complexes and resultant immune responses.
Cellulose, dextran, agarose, and other insoluble complexes are unaffected because they compose inert matrices, hence why they are so often derivatized with strong and weak cation and anion exchangers in chromatography. DEAE-C beads have diethylaminoethyl chains covalently bound to oxygen atoms on the D-glucose subunits of cellulose.