Search results
Results from the WOW.Com Content Network
The characteristic properties of elemental metals and nonmetals are quite distinct, as shown in the table below. Metalloids, straddling the metal-nonmetal border , are mostly distinct from either, but in a few properties resemble one or the other, as shown in the shading of the metalloid column below and summarized in the small table at the top ...
Nonmetals show more variability in their properties than do metals. [1] Metalloids are included here since they behave predominately as chemically weak nonmetals.. Physically, they nearly all exist as diatomic or monatomic gases, or polyatomic solids having more substantial (open-packed) forms and relatively small atomic radii, unlike metals, which are nearly all solid and close-packed, and ...
The above table reflects the hybrid nature of metalloids. The properties of form, appearance, and behaviour when mixed with metals are more like metals. Elasticity and general chemical behaviour are more like nonmetals. Electrical conductivity, band structure, ionization energy, electronegativity, and oxides are intermediate between the two.
The dividing line between metals and nonmetals can be found, in varying configurations, on some representations of the periodic table of the elements (see mini-example, right). Elements to the lower left of the line generally display increasing metallic behaviour; elements to the upper right display increasing nonmetallic behaviour.
In 1802 the term "metalloids" was introduced for elements with the physical properties of metals but the chemical properties of non-metals. [194] However, in 1811, the Swedish chemist Berzelius used the term "metalloids" [195] to describe all nonmetallic elements, noting their ability to form negatively charged ions with oxygen in aqueous ...
An alternative in metallurgy is to consider various malleable alloys such as steel, aluminium alloys and similar as metals, and other materials as nonmetals; [20] fabricating metals is termed metalworking, [21] but there is no corresponding term for nonmetals. A loose definition such as this is often the common usage, but can also be inaccurate.
The nonmetals are divided into four classes that complement a four-fold division of the metals, with the noble metals treated as a subset of the transition metals. The metalloids are treated as chemically weak nonmetals, in a manner analogous to their chemically weak frontier metal counterparts.
These sets usually do not aim to cover the whole periodic table (as for example period does), and often overlap or have boundaries that differ between authors. Some examples: Metals and nonmetals; Metalloids – Variously-defined group of elements with properties intermediate between metals and nonmetals. In alphabetic order: