Search results
Results from the WOW.Com Content Network
A torus, one of the most frequently studied objects in algebraic topology. Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
Let be a Grothendieck topology and a scheme.Moreover let be a group scheme over , a -torsor (or principal -bundle) over for the topology (or simply a -torsor when the topology is clear from the context) is the data of a scheme and a morphism : with a -invariant (right) action on that is locally trivial in i.e. there exists a covering {} such that the base change over is isomorphic to the ...
In mathematics, directed algebraic topology is a refinement of algebraic topology for directed spaces, topological spaces and their combinatorial counterparts equipped with some notion of direction. Some common examples of directed spaces are spacetimes and simplicial sets .
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces Subcategories. This category has the following ...
This terminology is often used in the case of the algebraic topology on the set of discrete, faithful representations of a Kleinian group into PSL(2,C). Another topology, the geometric topology (also called the Chabauty topology ), can be put on the set of images of the representations, and its closure can include extra Kleinian groups that are ...
Category theory was originally introduced for the need of homological algebra, and widely extended for the need of modern algebraic geometry (scheme theory). Category theory may be viewed as an extension of universal algebra , as the latter studies algebraic structures , and the former applies to any kind of mathematical structure and studies ...
Path (topology) Fundamental group; Homotopy group; Seifert–van Kampen theorem; Pointed space; Winding number; Simply connected. Universal cover; Monodromy; Homotopy lifting property; Mapping cylinder; Mapping cone (topology) Wedge sum; Smash product; Adjunction space; Cohomotopy; Cohomotopy group; Brown's representability theorem; Eilenberg ...
A continuous map : [,] is a deformation retraction of a space X onto a subspace A if, for every x in X and a in A, (,) =, (,), (,) =.In other words, a deformation retraction is a homotopy between a retraction and the identity map on X.