Search results
Results from the WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
For AI alignment, reinforcement learning with human feedback (RLHF) was used with a combination of 1,418,091 Meta examples and seven smaller datasets. The average dialog depth was 3.9 in the Meta examples, 3.0 for Anthropic Helpful and Anthropic Harmless sets, and 1.0 for five other sets, including OpenAI Summarize, StackExchange, etc.
AlphaDev is an artificial intelligence system developed by Google DeepMind to discover enhanced computer science algorithms using reinforcement learning.AlphaDev is based on AlphaZero, a system that mastered the games of chess, shogi and go by self-play.
Flux is an open-source machine-learning software library and ecosystem written in Julia. [1] [6] Its current stable release is v0.15.0 [4] .It has a layer-stacking-based interface for simpler models, and has a strong support on interoperability with other Julia packages instead of a monolithic design. [7]
IBM Granite is a series of decoder-only AI foundation models created by IBM. [3] It was announced on September 7, 2023, [4] [5] and an initial paper was published 4 days later. [6]
PyTorch is a machine learning library based on the Torch library, [4] [5] [6] used for applications such as computer vision and natural language processing, [7] originally developed by Meta AI and now part of the Linux Foundation umbrella.
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent. Specifically, it is a policy gradient method, often used for deep RL when the policy network is very large. The predecessor to PPO, Trust Region Policy Optimization (TRPO), was published in 2015.
Unlike earlier versions of AlphaGo, Zero only perceived the board's stones, rather than having some rare human-programmed edge cases to help recognize unusual Go board positions. The AI engaged in reinforcement learning, playing against itself until it could anticipate its own moves and how those moves would affect the game's outcome. [10]