Search results
Results from the WOW.Com Content Network
Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased (see bias versus consistency for more). All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias ...
Detection bias occurs when a phenomenon is more likely to be observed for a particular set of study subjects. For instance, the syndemic involving obesity and diabetes may mean doctors are more likely to look for diabetes in obese patients than in thinner patients, leading to an inflation in diabetes among obese patients because of skewed detection efforts.
When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
The relative efficiency of two unbiased estimators is defined as [12] (,) = [()] [()] = ()Although is in general a function of , in many cases the dependence drops out; if this is so, being greater than one would indicate that is preferable, regardless of the true value of .
However, there is also a more subtle form of bias that can occur even if the input, measured, quantities are unbiased; all terms after the first in Eq(14) represent this bias. It arises from the nonlinear transformations of random variables that often are applied in obtaining the derived quantity.
Suppose you are about to put your house on the market. Should you list it for round number, say, $250,000 or an exact amount such as $252,153? According to a recent study, if you price it at the ...
A typical measure of bias of forecasting procedure is the arithmetic mean or expected value of the forecast errors, but other measures of bias are possible. For example, a median-unbiased forecast would be one where half of the forecasts are too low and half too high: see Bias of an estimator .