Search results
Results from the WOW.Com Content Network
The end of the millennium, which was also the centennial of Hilbert's announcement of his problems, provided a natural occasion to propose "a new set of Hilbert problems". Several mathematicians accepted the challenge, notably Fields Medalist Steve Smale , who responded to a request by Vladimir Arnold to propose a list of 18 problems ( Smale's ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine [ edit ]
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [4] the zeroes of a function; whether the indefinite integral of a function is also in the class. [5] Of course, some subclasses of these problems are decidable.
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Hilbert's seventh problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns the irrationality and transcendence of certain numbers ( Irrationalität und Transzendenz bestimmter Zahlen ).
[5] [6] Among these was the problem of proving that the set of energy levels of one particular abstract quantum system was, in fact, the Cantor set, a challenge known as the "Ten Martini Problem" after the reward that Mark Kac offered for solving it. [6] [7] The 2000 list was a refinement of a similar set of problems that Simon had posed in ...
Secondly, we show that if a set system contains an element in at least half the sets, then its complement has an element in at most half. Lemma 2. A set system contains an element in half of its sets if and only if the complement set system , contains an element in at most half of its sets. Proof.