Search results
Results from the WOW.Com Content Network
A common example of a vertical asymptote is the case of a rational function at a point x such that the denominator is zero and the numerator is non-zero. If a function has a vertical asymptote, then it isn't necessarily true that the derivative of the function has a vertical asymptote at the same place. An example is
The folium of Descartes (green) with asymptote (blue) when = In geometry , the folium of Descartes (from Latin folium ' leaf '; named for René Descartes ) is an algebraic curve defined by the implicit equation x 3 + y 3 − 3 a x y = 0. {\displaystyle x^{3}+y^{3}-3axy=0.}
In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. . Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and phy
The function f(n) is said to be "asymptotically equivalent to n 2, as n → ∞". This is often written symbolically as f (n) ~ n 2, which is read as "f(n) is asymptotic to n 2". An example of an important asymptotic result is the prime number theorem.
Unconstrained rational function fitting can, at times, result in undesired vertical asymptotes due to roots in the denominator polynomial. The range of x values affected by the function "blowing up" may be quite narrow, but such asymptotes, when they occur, are a nuisance for local interpolation in the neighborhood of the asymptote point. These ...
The intuition of the delta method is that any such g function, in a "small enough" range of the function, can be approximated via a first order Taylor series (which is basically a linear function). If the random variable is roughly normal then a linear transformation of it is also normal. Small range can be achieved when approximating the ...
The basic truncus y = 1 / x 2 has asymptotes at x = 0 and y = 0, and every other truncus can be obtained from this one through a combination of translations and dilations. For the general truncus form above, the constant a dilates the graph by a factor of a from the x -axis; that is, the graph is stretched vertically when a > 1 and compressed ...
The inverse function only produces numerical values in the set of real numbers between its two asymptotes, which are now vertical instead of horizontal like in the forward Gompertz function. Outside of the range defined by the vertical asymptotes, the inverse function requires computing the logarithm of negative numbers.