Search results
Results from the WOW.Com Content Network
An infrared spectroscopy correlation table (or table of infrared absorption frequencies) is a list of absorption peaks and frequencies, typically reported in wavenumber, for common types of molecular bonds and functional groups.
An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance) on the vertical axis vs. frequency, wavenumber or wavelength on the horizontal axis. Typical units of wavenumber used in IR spectra are reciprocal centimeters, with the symbol cm −1. Units of IR wavelength are commonly given in micrometers (formerly ...
The spectra are plotted in units of log inverse reflectance (log 1/R) versus wavenumber. Alternative plots of Kubelka-Munk units can be used, which relate reflectance to concentration using a scaling factor. A reflectance standard is needed in order to quantify the reflectance of the sample because it cannot be determined directly. [2] [3]
The FT-IR spectra were recorded using a Nicolet 170SX or a JASCO FT/IR-410 spectrometer. For spectra recorded in the Nicolet spectrometer, the data were stored at intervals of 0.5 cm −1 in the 4,000 – 2,000 cm −1 region and of 0.25 cm −1 in the 2,000 – 400 cm −1 region and the spectral resolution was 0.25 cm −1.
Ethylbenzene is an organic compound with the formula C 6 H 5 CH 2 CH 3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline . This monocyclic aromatic hydrocarbon is important in the petrochemical industry as a reaction intermediate in the production of styrene , the precursor to polystyrene , a common plastic ...
In addition, the improved sensitivity and speed have opened up new areas of application. Spectra can be measured in situations where very little energy reaches the detector. Fourier transform infrared spectroscopy is used in geology, [11] chemistry, materials, botany [12] and biology research fields. [13]
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.
Infrared (IR) spectroelectrochemistry is a technique that allows the characterization of molecules based on the resistance, stiffness and number of bonds present. It also detects the presence of compounds, determines the concentration of species during a reaction, the structure of compounds, the properties of the chemical bonds, etc. [ 10 ]