enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.

  3. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact. The orthogonal group in dimension n has two connected components.

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A square matrix that commutes with its conjugate transpose: AA ∗ = A ∗ A: They are the matrices to which the spectral theorem applies. Orthogonal matrix: A matrix whose inverse is equal to its transpose, A −1 = A T. They form the orthogonal group. Orthonormal matrix: A matrix whose columns are orthonormal vectors. Partially Isometric matrix

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If instead, A is equal to the negative of its transpose, that is, A = −A T, then A is a skew-symmetric matrix. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfies A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex ...

  7. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    A square complex matrix whose transpose is equal to the matrix with every entry replaced by its complex conjugate (denoted here with an overline) is called a Hermitian matrix (equivalent to the matrix being equal to its conjugate transpose); that is, A is Hermitian if = ¯.

  8. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    These matrices are the orthogonal matrices (i.e. each is a square matrix G whose transpose is its inverse, i.e. = =.), with determinant 1 (the other possibility for orthogonal matrices is −1, which gives a mirror image, see below). They form the special orthogonal group SO(2).

  9. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.