enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  3. SLEPc - Wikipedia

    en.wikipedia.org/wiki/SLEPc

    Polynomial filters for interior eigenvalues. SVD contains solvers for the singular value decomposition as well as the generalized singular value decomposition. Solvers based on the cross-product matrix or the cyclic matrix, that rely on EPS solvers. Specific solvers based on bidiagonalization such as Golub-Kahan-Lanczos and a thick-restarted ...

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    For example, the fourth-order Hilbert matrix has a condition of 15514, while for order 8 it is 2.7 × 10 8. Rank A matrix has rank if it has columns that are linearly independent while the remaining columns are linearly dependent on these.

  6. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  7. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    A simple work-around is to negate the function, substituting -D T (D X) for D T (D X) and thus reversing the order of the eigenvalues, since LOBPCG does not care if the matrix of the eigenvalue problem is positive definite or not. [9] LOBPCG for PCA and SVD is implemented in SciPy since revision 1.4.0 [13]

  8. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    Commonly used choices are = / (Mahalanobis or ZCA whitening), = where is the Cholesky decomposition of (Cholesky whitening), [3] or the eigen-system of (PCA whitening). [ 4 ] Optimal whitening transforms can be singled out by investigating the cross-covariance and cross-correlation of X {\displaystyle X} and Y {\displaystyle Y} . [ 3 ]

  9. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.