enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    These techniques can be combined with microscopy, to map the intensity (confocal microscopy) or the lifetime (fluorescence-lifetime imaging microscopy) of the photoluminescence across a sample (e.g. a semiconducting wafer, or a biological sample that has been marked with fluorescent molecules). Modulated photoluminescence is a specific method ...

  3. Phosphorescence - Wikipedia

    en.wikipedia.org/wiki/Phosphorescence

    Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluorescence, a phosphorescent material does not immediately reemit the radiation it absorbs.

  4. Photoluminescence excitation - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence_excitation

    Photoluminescence excitation (abbreviated PLE) is a specific type of photoluminescence and concerns the interaction between electromagnetic radiation and matter.It is used in spectroscopic measurements where the frequency of the excitation light is varied, and the luminescence is monitored at the typical emission frequency of the material being studied.

  5. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.

  6. CIELAB color space - Wikipedia

    en.wikipedia.org/wiki/CIELAB_color_space

    Furthermore, uniform changes of components in the L*a*b* color space aim to correspond to uniform changes in perceived color, so the relative perceptual differences between any two colors in L*a*b* can be approximated by treating each color as a point in a three-dimensional space (with three components: L*, a*, b*) and taking the Euclidean ...

  7. CIE 1931 color space - Wikipedia

    en.wikipedia.org/wiki/CIE_1931_color_space

    A comparison between a typical normalized M cone's spectral sensitivity and the CIE 1931 luminosity function for a standard observer in photopic vision. In the CIE 1931 model, Y is the luminance, Z is quasi-equal to blue (of CIE RGB), and X is a mix of the three CIE RGB curves chosen to be nonnegative (see § Definition of the CIE XYZ color space).

  8. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...

  9. Fluorescence spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_spectroscopy

    Furthermore, tryptophan fluorescence is strongly influenced by the proximity of other residues (i.e., nearby protonated groups such as Asp or Glu can cause quenching of Trp fluorescence). Also, energy transfer between tryptophan and the other fluorescent amino acids is possible, which would affect the analysis, especially in cases where the ...