Search results
Results from the WOW.Com Content Network
In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step
In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.
In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.
The process of determining the equations that govern the model's dynamics is called system identification. This can be done off-line: for example, executing a series of measures from which to calculate an approximated mathematical model, typically its transfer function or matrix. Such identification from the output, however, cannot take account ...
Consider a system composed by n cascaded non interacting blocks, each having a rise time t r i, i = 1,…,n, and no overshoot in their step response: suppose also that the input signal of the first block has a rise time whose value is t r S. [22] Afterwards, its output signal has a rise time t r 0 equal to
Hurwitz zeta function, a generalization of the Riemann zeta function; Igusa zeta function; Ihara zeta function of a graph; L-function, a "twisted" zeta function; Lefschetz zeta function of a morphism; Lerch zeta function, a generalization of the Riemann zeta function; Local zeta function of a characteristic-p variety; Matsumoto zeta function
This definition of dimension could be put on a strong mathematical foundation, similar to the definition of Hausdorff dimension for continuous systems. The mathematically robust definition uses the concept of a zeta function for a graph. The complex network zeta function and the graph surface function were introduced to characterize large graphs.
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.