enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Hadamard_matrix

    Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .

  3. Quincunx matrix - Wikipedia

    en.wikipedia.org/wiki/Quincunx_matrix

    In mathematics, the matrix ()is sometimes called the quincunx matrix.It is a 2×2 Hadamard matrix, and its rows form the basis of a diagonal square lattice consisting of the integer points whose coordinates both have the same parity; this lattice is a two-dimensional analogue of the three-dimensional body-centered cubic lattice.

  4. Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Hadamard_transform

    The Hadamard transform H m is a 2 m × 2 m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2 m real numbers x n into 2 m real numbers X k.The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

  5. Paley construction - Wikipedia

    en.wikipedia.org/wiki/Paley_construction

    The Kronecker product of two Hadamard matrices of sizes m and n is an Hadamard matrix of size mn. By forming Kronecker products of matrices from the Paley construction and the 2 × 2 matrix, = [], Hadamard matrices of every permissible size up to 100 except for 92 are produced.

  6. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.

  7. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  8. Regular Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Regular_Hadamard_matrix

    While the order of a Hadamard matrix must be 1, 2, or a multiple of 4, regular Hadamard matrices carry the further restriction that the order must be a square number. The excess, denoted E(H ), of a Hadamard matrix H of order n is defined to be the sum of the entries of H. The excess satisfies the bound |E(H )| ≤ n 3/2.

  9. Complex Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Complex_Hadamard_matrix

    Any complex Hadamard matrix is equivalent to a dephased Hadamard matrix, in which all elements in the first row and first column are equal to unity. For N = 2 , 3 {\displaystyle N=2,3} and 5 {\displaystyle 5} all complex Hadamard matrices are equivalent to the Fourier matrix F N {\displaystyle F_{N}} .