Search results
Results from the WOW.Com Content Network
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.
In most cases the effect of the ambiguity is equivalent to the effect of a rotation matrix inversion (for these orthogonal matrices equivalently matrix transpose). Alias or alibi (passive or active) transformation The coordinates of a point P may change due to either a rotation of the coordinate system CS , or a rotation of the point P .
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Equivalently, a matrix A is orthogonal if its transpose is equal to its inverse: =, which entails = =, where I is the identity matrix. An orthogonal matrix A is necessarily invertible (with inverse A −1 = A T), unitary (A −1 = A*), and normal (A*A = AA*). The determinant of any orthogonal matrix is either +1 or −1.
Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact. The orthogonal group in dimension n has two connected components.
The matrix maps the basis vector to the stretched unit vector . By the definition of a unitary matrix, the same is true for their conjugate transposes U ∗ {\displaystyle \mathbf {U} ^{*}} and V , {\displaystyle \mathbf {V} ,} except the geometric interpretation of the singular values as stretches is lost.
Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .