enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Silicon–oxygen bond - Wikipedia

    en.wikipedia.org/wiki/Siliconoxygen_bond

    Silicon–oxygen single bonds are longer (1.6 vs 1.4 Å) but stronger (452 vs. about 360 kJ mol −1) than carbon–oxygen single bonds. [1] However, silicon–oxygen double bonds are weaker than carbon–oxygen double bonds (590 vs. 715 kJ mol −1) due to a better overlap of p orbitals forming a stronger pi bond in the latter. This is an ...

  3. Dangling bond - Wikipedia

    en.wikipedia.org/wiki/Dangling_bond

    A configuration-coordinate diagram of the valence band, conduction band and dangling bond energy band in silicon. The arrows indicate the relaxation energies. A dangling bond adds an extra energy level between the valence band and conduction band of a lattice. This allows for absorption and emission at longer wavelengths, because electrons can ...

  4. Silicone rubber - Wikipedia

    en.wikipedia.org/wiki/Silicone_rubber

    For example the silicon–oxygen bond in polysiloxanes is significantly more stable than the carbon-oxygen bond in polyoxymethylene, a structurally similar polymer. The difference is partly due to the higher bond energy, the energy required to break the Si-O bond, and also because polyoxymethylene decomposes formaldehyde, which is volatile and ...

  5. Silicone - Wikipedia

    en.wikipedia.org/wiki/Silicone

    Silicon is a chemical element, a hard dark-grey semiconducting metalloid, which in its crystalline form is used to make integrated circuits ("electronic chips") and solar cells. Silicones are compounds that contain silicon, carbon, hydrogen, oxygen, and perhaps other kinds of atoms as well, and have many very different physical and chemical ...

  6. Siloxane - Wikipedia

    en.wikipedia.org/wiki/Siloxane

    The main route to siloxane functional group is by hydrolysis of silicon chlorides: 2 R 3 Si−Cl + H 2 O → R 3 Si−O−SiR 3 + 2 HCl. The reaction proceeds via the initial formation of silanols (R 3 Si−OH): R 3 Si−Cl + H 2 O → R 3 Si−OH + HCl. The siloxane bond can then form via a silanol + silanol pathway or a silanol + chlorosilane ...

  7. Silicon dioxide - Wikipedia

    en.wikipedia.org/wiki/Silicon_dioxide

    In dimeric silicon dioxide there are two oxygen atoms bridging between the silicon atoms with an Si–O–Si angle of 94° and bond length of 164.6 pm and the terminal Si–O bond length is 150.2 pm. The Si–O bond length is 148.3 pm, which compares with the length of 161 pm in α-quartz. The bond energy is estimated at 621.7 kJ/mol. [21]

  8. Organosilicon chemistry - Wikipedia

    en.wikipedia.org/wiki/Organosilicon_chemistry

    The silicon to hydrogen bond is longer than the C–H bond (148 compared to 105 pm) and weaker (299 compared to 338 kJ/mol). Hydrogen is more electronegative than silicon hence the naming convention of silyl hydrides. Commonly the presence of the hydride is not mentioned in the name of the compound. Triethylsilane has the formula Et 3 SiH.

  9. Silicon - Wikipedia

    en.wikipedia.org/wiki/Silicon

    The poor overlap of 3p orbitals also results in a much lower tendency toward catenation (formation of Si–Si bonds) for silicon than for carbon, due to the concomitant weakening of the Si–Si bond compared to the C–C bond: [63] the average Si–Si bond energy is approximately 226 kJ/mol, compared to a value of 356 kJ/mol for the C–C bond ...