enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  3. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The following formula describes the viscous stress tensor for the special case of Stokes flow. It is needed in the calculation of the force acting on the particle. In Cartesian coordinates the vector-gradient is identical to the Jacobian matrix. The matrix I represents the identity-matrix.

  5. Taylor number - Wikipedia

    en.wikipedia.org/wiki/Taylor_number

    In fluid dynamics, the Taylor number (Ta) is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about an axis, relative to viscous forces. [1] In 1923 Geoffrey Ingram Taylor introduced this quantity in his article on the stability of flow. [2]

  6. Ohnesorge number - Wikipedia

    en.wikipedia.org/wiki/Ohnesorge_number

    This is often used to relate to free surface fluid dynamics such as dispersion of liquids in gases and in spray technology. [3] [4] In inkjet printing, liquids whose Ohnesorge number are in the range 0.1 < Oh < 1.0 are jettable (1<Z<10 where Z is the reciprocal of the Ohnesorge number). [1] [5]

  7. Capillary number - Wikipedia

    en.wikipedia.org/wiki/Capillary_number

    Multiphase flows forms when two or more partially or immiscible fluids are brought in contact. [7] The capillary number in multiphase flow has the same definition as the single flow formulation, the ratio of viscous to surface forces but has the added(?) effect of the ratio of fluid viscosities: [clarification needed]

  8. Archimedes number - Wikipedia

    en.wikipedia.org/wiki/Archimedes_number

    In viscous fluid dynamics, the Archimedes number (Ar), is a dimensionless number used to determine the motion of fluids due to density differences, named after the ancient Greek scientist and mathematician Archimedes. It is the ratio of gravitational forces to viscous forces [1] and has the form: [2]

  9. Grashof number - Wikipedia

    en.wikipedia.org/wiki/Grashof_number

    Free convection is caused by a change in density of a fluid due to a temperature change or gradient. Usually the density decreases due to an increase in temperature and causes the fluid to rise. This motion is caused by the buoyancy force. The major force that resists the motion is the viscous force. The Grashof number is a way to quantify the ...