Search results
Results from the WOW.Com Content Network
The history of modems is the attempt at increasing the bit rate over a fixed bandwidth (and therefore a fixed maximum symbol rate), leading to increasing bits per symbol. For example, ITU-T V.29 specifies 4 bits per symbol, at a symbol rate of 2,400 baud, giving an effective bit rate of 9,600 bits per second.
In digital telecommunications the data is usually binary, so the number of points in the grid is typically a power of 2 (2, 4, 8, …), corresponding to the number of bits per symbol. The simplest and most commonly used QAM constellations consist of points arranged in a square, i.e. 16-QAM, 64-QAM and 256-QAM (even powers of two).
Fiber optic systems can use quadrature amplitude modulation to maximize throughput. 16QAM uses a 16-point constellation to send four bits per symbol, with speeds on the order of 200 or 400 gigabits per second. [65] [66] 64QAM uses a 64-point constellation to send six bits per symbol, with speeds up to 65 terabits per second. Although this ...
In a 6 MHz channel, the data rate is at most 36 Mbit/s (for 64-QAM or 8-VSB); the 8-VSB ATSC achieves a data rate of 19.3926 Mbit/s while the 64-QAM J.83b achieves a data rate of 26.970 Mbit/s. While both systems use concatenated trellis/RS coding, the differences in symbol rate and FEC redundancy account for the differences in rate.
A diagram with four points, for example, represents a modulation scheme that can separately encode all 4 combinations of two bits: 00, 01, 10, and 11, and so can transmit two bits per symbol. Thus in general a modulation with N {\displaystyle N} constellation points transmits log 2 N {\displaystyle \log _{2}N} bits per symbol.
Of the 52 OFDM subcarriers, 48 are for data and 4 are pilot subcarriers with a carrier separation of 0.3125 MHz (20 MHz/64). Each of these subcarriers can be a BPSK, QPSK, 16-QAM or 64-QAM. The total bandwidth is 20 MHz with an occupied bandwidth of 16.6 MHz. Symbol duration is 4 microseconds, which includes a guard interval of 0.8 microseconds ...
Differential coding: In order to get a rotation-invariant constellation, this unit shall apply a differential encoding of the two Most Significant Bits (MSBs) of each symbol. QAM Mapper: the bit sequence is mapped into a base-band digital sequence of complex symbols. There are 5 allowed modulation modes: 16-QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM.
The advantage of APSK over conventional QAM is a lower number of possible amplitude levels and therefore a lower peak-to-average power ratio (PAPR). [2] The resilience of APSK to amplifier and channel non-linearities afforded by its low PAPR have made it especially attractive for satellite communications, including DVB-S2 .