Search results
Results from the WOW.Com Content Network
[1] The logarithmic profile of wind speeds is generally limited to the lowest 100 m of the atmosphere (i.e., the surface layer of the atmospheric boundary layer). The rest of the atmosphere is composed of the remaining part of the planetary boundary layer (up to around 1000 m) and the troposphere or free atmosphere.
The transponder gets its altitude information from an encoding altimeter mounted behind the instrument panel that communicates via the Gillham code. Gillham code is a zero-padded 12-bit binary code using a parallel nine- [ 1 ] to eleven-wire interface , [ 2 ] the Gillham interface , that is used to transmit uncorrected barometric altitude ...
During straight and level flight, the load factor is +1 if the aircraft is flown "the right way up", [2]: 90 whereas it becomes −1 if the aircraft is flown "upside-down" (inverted). In both cases the lift vector is the same (as seen by an observer on the ground), but in the latter the vertical axis of the aircraft points downwards, making the ...
Geopotential height differs from geometric height (as given by a tape measure) because Earth's gravity is not constant, varying markedly with altitude and latitude; thus, a 1-m geopotential height difference implies a different vertical distance in physical space: "the unit-mass must be lifted higher at the equator than at the pole, if the same ...
Values of ρ b of b = 1 through b = 6 are obtained from the application of the appropriate member of the pair equations 1 and 2 for the case when h = h b+1. [ 2 ] In these equations, g 0 , M and R * are each single-valued constants, while ρ , L , T and h are multi-valued constants in accordance with the table below.
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height: H = R T M g 0 {\displaystyle H={\frac {RT}{Mg_{0}}}} where R is the ideal gas constant, T is temperature, M is average molecular weight, and g 0 is the gravitational acceleration at the planet's surface.
z is the elevation in meters, R is the specific gas constant = 287.053 J/(kg K) T is the absolute temperature in kelvins = 288.15 K at sea level, g is the acceleration due to gravity = 9.806 65 m/s 2 at sea level, P is the pressure at a given point at elevation z in Pascals, and; P 0 is pressure at the reference point = 101,325 Pa at sea level.