Search results
Results from the WOW.Com Content Network
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)). During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array. The simplest worst case input is an array sorted in reverse order.
sort is a generic function in the C++ Standard Library for doing comparison sorting.The function originated in the Standard Template Library (STL).. The specific sorting algorithm is not mandated by the language standard and may vary across implementations, but the worst-case asymptotic complexity of the function is specified: a call to sort must perform no more than O(N log N) comparisons ...
Merge sort. In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order.The most frequently used orders are numerical order and lexicographical order, and either ascending or descending.
Among quadratic sorting algorithms (sorting algorithms with a simple average-case of Θ(n 2)), selection sort almost always outperforms bubble sort and gnome sort. Insertion sort is very similar in that after the kth iteration, the first elements in the array are in sorted order.
Adding an item to an unbalanced binary tree requires O(n) time in the worst-case: When the tree resembles a linked list (degenerate tree). This results in a worst case of O(n²) time for this sorting algorithm. This worst case occurs when the algorithm operates on an already sorted set, or one that is nearly sorted, reversed or nearly reversed.
Similar to generic bucket sort as described above, ProxmapSort works by dividing an array of keys into subarrays via the use of a "map key" function that preserves a partial ordering on the keys; as each key is added to its subarray, insertion sort is used to keep that subarray sorted, resulting in the entire array being in sorted order when ...
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...