Search results
Results from the WOW.Com Content Network
Application of nanomotor implants have been proposed to achieve thorough disinfection of the dentine. [ 21 ] [ 22 ] In vivo imaging is also a key part in nanomedicine, as nanoparticles can be used as contrast agents for common imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography ...
The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical ...
See additional applications in: Optical properties of carbon nanotubes. Carbon nanotube photoluminescence (fluorescence) can be used to observe semiconducting single-walled carbon nanotube species. Photoluminescence maps, made by acquiring the emission and scanning the excitation energy, can facilitate sample characterization. [154]
Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter.
Nanomaterials exhibit different chemical and physical properties or biological effects compared to larger-scale counterparts that can be beneficial for drug delivery systems. Some important advantages of nanoparticles are their high surface-area-to-volume ratio, chemical and geometric tunability, and their ability to interact with biomolecules ...
Nanomedicine is the medical application of nanotechnology. [5] The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future.
Some applications that have been suggested are advanced smart materials, nanosensors, medical nanorobots and space travel. [19] Additionally, molecular manufacturing could be used to cheaply produce highly advanced, durable weapons, which is an area of special concern regarding the impact of nanotechnology. [ 20 ]