enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.

  3. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem. [8]

  4. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .

  5. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x 2 /2 is a concave function of x. But f is not concave since the second derivative is positive for | x | > 1:

  6. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a convex set. In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap .

  7. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Otherwise, if a feasible solution exists and if the constraint set is bounded, then the optimum value is always attained on the boundary of the constraint set, by the maximum principle for convex functions (alternatively, by the minimum principle for concave functions) since linear functions are both convex and concave. However, some problems ...

  8. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    The necessary conditions are sufficient for optimality if the objective function of a maximization problem is a differentiable concave function, the inequality constraints are differentiable convex functions, the equality constraints are affine functions, and Slater's condition holds. [11]

  9. Proper convex function - Wikipedia

    en.wikipedia.org/wiki/Proper_convex_function

    In convex analysis and variational analysis, a point (in the domain) at which some given function is minimized is typically sought, where is valued in the extended real number line [,] = {}. [1] Such a point, if it exists, is called a global minimum point of the function and its value at this point is called the global minimum (value) of the ...