enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.

  3. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem. [8]

  4. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    This follows from the fact that the convolution of two log-concave functions is log-concave. The product of two log-concave functions is log-concave. This means that joint densities formed by multiplying two probability densities (e.g. the normal-gamma distribution, which always has a shape parameter ≥ 1) will be log-concave.

  5. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    Convex analysis includes not only the study of convex subsets of Euclidean spaces but also the study of convex functions on abstract spaces. Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets , often with applications in convex minimization , a subdomain of optimization theory .

  6. Fractional programming - Wikipedia

    en.wikipedia.org/wiki/Fractional_programming

    A fractional program in which f is nonnegative and concave, g is positive and convex, and S is a convex set is called a concave fractional program.If g is affine, f does not have to be restricted in sign.

  7. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    As stated above, the complexity of finding a convex hull as a function of the input size n is lower bounded by Ω(n log n). However, the complexity of some convex hull algorithms can be characterized in terms of both input size n and the output size h (the number of points in the hull). Such algorithms are called output-sensitive algorithms.

  8. MM algorithm - Wikipedia

    en.wikipedia.org/wiki/Mm_algorithm

    The MM algorithm is an iterative optimization method which exploits the convexity of a function in order to find its maxima or minima. The MM stands for “Majorize-Minimization” or “Minorize-Maximization”, depending on whether the desired optimization is a minimization or a maximization.

  9. Convex conjugate - Wikipedia

    en.wikipedia.org/wiki/Convex_conjugate

    In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).