Search results
Results from the WOW.Com Content Network
Stool osmotic gap is a measurement of the difference in solute types between serum and feces, used to distinguish among different causes of diarrhea. Feces is normally in osmotic equilibrium with blood serum, which the human body maintains between 290–300 mOsm/kg. [ 1 ]
Urine osmolality in humans can range from approximately 50 to 1200 mOsm/kg, depending on whether the person has recently drunk a large quantity of water (the lower number) or has gone without water for a long time (the higher number). [2] Plasma osmolality with typical fluid intake often averages approximately 290 mOsm/kg H 2 O in humans. [2]
Uremia is the condition of having high levels of urea in the blood. Urea is one of the primary components of urine.It can be defined as an excess in the blood of amino acid and protein metabolism end products, such as urea and creatinine, which would normally be excreted in the urine.
The interpretation of urinalysis takes into account the results of physical, chemical and microscopic examination and the person's overall condition. Urine test results should always be interpreted using the reference range provided by the laboratory that performed the test, or using information provided by the test strip/device manufacturer. [136]
Diagnosis is based on clinical and laboratory findings of low serum osmolality and low serum sodium. [13] Urinalysis reveals a highly concentrated urine with a high fractional excretion of sodium (high sodium urine content compared to the serum sodium). [14] A suspected diagnosis is based on a serum sodium under 138.
The osmol gap is typically calculated with the following formula (all values in mmol/L): = = ([+] + [] + []) In non-SI laboratory units: Calculated osmolality = 2 x [Na mmol/L] + [glucose mg/dL] / 18 + [BUN mg/dL] / 2.8 + [ethanol/3.7] [3] (note: the values 18 and 2.8 convert mg/dL into mmol/L; the molecular weight of ethanol is 46, but empiric data shows that it does not act as an ideal ...
A urinalysis will typically show a decreased urine sodium level, a high urine creatinine-to-serum creatinine ratio, a high urine urea-to-serum urea ratio, and concentrated urine (determined by osmolality and specific gravity). None of these is particularly useful in diagnosis.
Adults generally have a specific gravity in the range of 1.010 to 1.030. Increases in specific gravity (hypersthenuria, i.e. increased concentration of solutes in the urine) may be associated with dehydration, diarrhea, emesis, excessive sweating, urinary tract/bladder infection, glucosuria, renal artery stenosis, hepatorenal syndrome, decreased blood flow to the kidney (especially as a result ...