Search results
Results from the WOW.Com Content Network
Stool osmotic gap is a measurement of the difference in solute types between serum and feces, used to distinguish among different causes of diarrhea. Feces is normally in osmotic equilibrium with blood serum, which the human body maintains between 290–300 mOsm/kg. [ 1 ]
Urine osmolality in humans can range from approximately 50 to 1200 mOsm/kg, depending on whether the person has recently drunk a large quantity of water (the lower number) or has gone without water for a long time (the higher number). [2] Plasma osmolality with typical fluid intake often averages approximately 290 mOsm/kg H 2 O in humans. [2]
Diagnosis is based on clinical and laboratory findings of low serum osmolality and low serum sodium. [13] Urinalysis reveals a highly concentrated urine with a high fractional excretion of sodium (high sodium urine content compared to the serum sodium). [14] A suspected diagnosis is based on a serum sodium under 138.
A low serum osmolality will suppress the release of ADH, resulting in decreased water reabsorption and more concentrated plasma. Syndrome of inappropriate ADH secretion occurs when excessive release of antidiuretic hormone results in inappropriately elevated urine osmolality (>100 mOsmol/L) relative to the blood plasma, leading to hyponatraemia.
The osmol gap is typically calculated with the following formula (all values in mmol/L): = = ([+] + [] + []) In non-SI laboratory units: Calculated osmolality = 2 x [Na mmol/L] + [glucose mg/dL] / 18 + [BUN mg/dL] / 2.8 + [ethanol/3.7] [3] (note: the values 18 and 2.8 convert mg/dL into mmol/L; the molecular weight of ethanol is 46, but empiric data shows that it does not act as an ideal ...
Reference ranges for urine tests are described below: Measurement Lower limit Upper limit ... per High Power Field (HPF) RBC casts: n/a 0 / negative [2] White blood ...
One of the earliest uses of the method was in an analytical study, in which the urine osmolality of 1,991 dogs was tested. [ 5 ] [ 6 ] The study established its advantages over other conventional concentration osmometers which rely on the osmotic pressure profile and it was found to be ideal for dilute, biological samples.
A urinalysis will typically show a decreased urine sodium level, a high urine creatinine-to-serum creatinine ratio, a high urine urea-to-serum urea ratio, and concentrated urine (determined by osmolality and specific gravity). None of these is particularly useful in diagnosis.