Search results
Results from the WOW.Com Content Network
The cipher illustrated here uses a left shift of 3, so that (for example) each occurrence of E in the plaintext becomes B in the ciphertext. In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher, Caesar's code, or Caesar shift, is one of the simplest and most widely known encryption techniques.
ROT13 is a special case of the Caesar cipher which was developed in ancient Rome, used by Julius Caesar in the 1st century BC. [1] An early entry on the Timeline of cryptography . ROT13 can be referred by "Rotate13", "rotate by 13 places", hyphenated "ROT-13" or sometimes by its autonym "EBG13".
One of the most famous military encryption developments was the Caesar cipher, in which a plaintext letter is shifted a fixed number of positions along the alphabet to get the encoded letter. A message encoded with this type of encryption could be decoded with a fixed number on the Caesar cipher. [4]
A block cipher enciphers input in blocks of plaintext as opposed to individual characters, the input form used by a stream cipher. The Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are block cipher designs that have been designated cryptography standards by the US government (though DES's designation was finally ...
Stream ciphers are defined as using plain text digits that are combined with a pseudorandom cipher digit stream. Stream ciphers are typically faster than block ciphers and may have lower hardware complexity, but may be more susceptible to attacks.
In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is encipherment. To encipher or encode is to convert information into cipher or code.
A well-known example of a substitution cipher is the Caesar cipher. To encrypt a message with the Caesar cipher, each letter of message is replaced by the letter three positions later in the alphabet. Hence, A is replaced by D, B by E, C by F, etc. Finally, X, Y and Z are replaced by A, B and C respectively.
The encryption input also includes a public nonce N, the output - authentication tag T, size of the ciphertext C is the same as that of P. The decryption uses N, A, C, and T as inputs and produces either P or signals verification failure if the message has been altered. Nonce and tag have the same size as the key K (k bits). [6]