Search results
Results from the WOW.Com Content Network
Richard Caton discovered electrical activity in the cerebral hemispheres of rabbits and monkeys and presented his findings in 1875. [4] Adolf Beck published in 1890 his observations of spontaneous electrical activity of the brain of rabbits and dogs that included rhythmic oscillations altered by light, detected with electrodes directly placed on the surface of the brain. [5]
[58] [77] More specifically, the scalp electrical potentials that produce EEG are generally thought to be caused by the extracellular ionic currents caused by dendritic electrical activity, whereas the fields producing magnetoencephalographic signals [28] are associated with intracellular ionic currents. [78]
Brainwave entrainment, also referred to as brainwave synchronization or neural entrainment, refers to the observation that brainwaves (large-scale electrical oscillations in the brain) will naturally synchronize to the rhythm of periodic external stimuli, such as flickering lights, [1] speech, [2] music, [3] or tactile stimuli.
The free flow of ions between cells enables rapid non-chemical-mediated transmission. Rectifying channels ensure that action potentials move only in one direction through an electrical synapse. [citation needed] Electrical synapses are found in all nervous systems, including the human brain, although they are a distinct minority. [24]
Electrical brain stimulation (EBS), also referred to as focal brain stimulation (FBS), is a form of electrotherapy and neurotherapy used as a technique in research and clinical neurobiology to stimulate a neuron or neural network in the brain through the direct or indirect excitation of its cell membrane by using an electric current.
An electrode introduced into the brain of a living animal will detect electrical activity that is generated by the neurons adjacent to the electrode tip. If the electrode is a microelectrode, with a tip size of about 1 micrometre, the electrode will usually detect the activity of at most one neuron.
One such region is the nucleus accumbens—a key part of the brain’s reward system that’s fueled by dopamine, a chemical that Wise fondly refers to as “the slutty neurotransmitter” because ...
Dendrites contain voltage-gated ion channels giving them the ability to generate action potentials. Dendritic spikes have been recorded in numerous types of neurons in the brain and are thought to have great implications in neuronal communication, memory, and learning. They are one of the major factors in long-term potentiation.