Search results
Results from the WOW.Com Content Network
In the basic assignment problem, each agent is assigned to at most one task and each task is assigned to at most one agent. In the many-to-many assignment problem, [10] each agent i may take up to c i tasks (c i is called the agent's capacity), and each task j may be taken by up to d j agents simultaneously (d j is called the task's capacity).
TK Solver's core technologies are a declarative programming language, algebraic equation solver, [1] an iterative equation solver, and a structured, object-based interface, using a command structure. [ 1 ] [ 7 ] The interface comprises nine classes of objects that can be shared between and merged into other TK files:
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...
SolverStudio is a free Excel plug-in developed at the University of Auckland [1] that supports optimization and simulation modelling in a spreadsheet using an algebraic modeling language. It is popular in education, [ 2 ] the public sector [ 3 ] and industry for optimization users because it uses industry-standard modelling languages and is ...
In the special case in which all the agents' budgets and all tasks' costs are equal to 1, this problem reduces to the assignment problem. When the costs and profits of all tasks do not vary between different agents, this problem reduces to the multiple knapsack problem. If there is a single agent, then, this problem reduces to the knapsack problem.
The quadratic assignment problem (QAP) is one of the fundamental combinatorial optimization problems in the branch of optimization or operations research in mathematics, from the category of the facilities location problems first introduced by Koopmans and Beckmann. [1] The problem models the following real-life problem:
Dlib is a modern C++ library with easy to use linear algebra and optimization tools which benefit from optimized BLAS and LAPACK libraries. Eigen is a vector mathematics library with performance comparable with Intel's Math Kernel Library; Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers.
The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.