Search results
Results from the WOW.Com Content Network
Figure 10: Amplitude diagram of a 10th-order electronic filter plotted using a Bode plotter. The Bode plotter is an electronic instrument resembling an oscilloscope, which produces a Bode diagram, or a graph, of a circuit's voltage gain or phase shift plotted against frequency in a feedback control system or a filter. An example of this is ...
The gain and the delay for this filter are plotted in the graph on the left. There are no ripples in the gain curve in either the passband or the stopband. The log of the absolute value of the transfer function () is plotted in complex frequency space in the second graph on the right. The function is defined by the three poles in the left half ...
Such an amplitude-versus-frequency graph is also often referred to as a Bode (pronounced "bodee") graph or Bode plot. In the 1960s a device described as a wobbulator was made by instrument company Brüel & Kjær. It was an audio-frequency oscillator with an adjustable frequency modulation.
Phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input. For example, if the amplifier's open-loop gain crosses 0 dB at a ...
Bode magnitude plot for the voltages across the elements of an RLC series circuit. Natural frequency ω 0 = 1 rad/s, damping ratio ζ = 0.4. Sinusoidal steady state is represented by letting s = jω, where j is the imaginary unit. Taking the magnitude of the above equation with this substitution:
Bode plot of compensated transimpedance amplifier [7] The Bode plot of a transimpedance amplifier that has a compensation capacitor in the feedback path is shown in Fig. 5, where the compensated feedback factor plotted as a reciprocal, 1/β, starts to roll off before f i, reducing the slope at the intercept. The loop gain is still unity, but ...
Description. English: The Bode plot of a Butterworth filter with logarithmic axes and various labels. Cutoff frequency is normalized to 1 rad/s. Gain is normalized to 0 dB in the passband. Phase is in degrees because that's typical. The code is kind of kludgy, but makes a good output.
A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications.