enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  4. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe (inside) diameter. f stands for the Darcy friction factor. Its value depends on the flow's Reynolds number Re and on the pipe's relative roughness ε / D.

  5. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    Jean Le Rond d'Alembert, Nouvelles expériences sur la résistance des fluides, 1777. In fluid dynamics, friction loss (or frictional loss) is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    When the pipes have certain roughness <, this factor must be taken in account when the Fanning friction factor is calculated. The relationship between pipe roughness and Fanning friction factor was developed by Haaland (1983) under flow conditions of 4 ⋅ 10 4 < R e < 10 7 {\displaystyle 4\centerdot 10^{4}<Re<10^{7}}

  8. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In this form the law approximates the Darcy friction factor, the energy (head) loss factor, friction loss factor or Darcy (friction) factor Λ in the laminar flow at very low velocities in cylindrical tube. The theoretical derivation of a slightly different form of the law was made independently by Wiedman in 1856 and Neumann and E. Hagenbach ...

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Darcy-Weisbach equation was difficult to use because the friction factor was difficult to estimate. [7] In 1906, Hazen and Williams provided an empirical formula that was easy to use. The general form of the equation relates the mean velocity of water in a pipe with the geometric properties of the pipe and the slope of the energy line.