enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Observer effect (physics) - Wikipedia

    en.wikipedia.org/wiki/Observer_effect_(physics)

    In physics, the observer effect is the disturbance of an observed system by the act of observation. [1] [2] This is often the result of utilising instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire, which causes some of the air to escape, thereby ...

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon. [note 3] Newton's first law expresses the principle of inertia: the natural behavior of a body is to move in a straight line at constant speed. A body's motion preserves the ...

  4. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.

  5. Frame of reference - Wikipedia

    en.wikipedia.org/wiki/Frame_of_reference

    An observational frame of reference, often referred to as a physical frame of reference, a frame of reference, or simply a frame, is a physical concept related to an observer and the observer's state of motion. Here we adopt the view expressed by Kumar and Barve: an observational frame of reference is characterized only by its state of motion. [19]

  6. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.

  7. Moving magnet and conductor problem - Wikipedia

    en.wikipedia.org/wiki/Moving_magnet_and...

    The existence of classical electromagnetic fields can be inferred from the motion of charged particles, whose trajectories are observable. Electromagnetic fields do explain the observed motions of classical charged particles. A strong requirement in physics is that all observers of the motion of a particle agree on the trajectory of the ...

  8. History of special relativity - Wikipedia

    en.wikipedia.org/wiki/History_of_special_relativity

    The clocks consist of two plane mirrors parallel to one another and to the line of motion. Between the mirrors a light signal is bouncing, and for the observer resting in the same reference frame as A, the period of clock A is the distance between the mirrors divided by the speed of light.

  9. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    This is known as the principle of relativity. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance. The first postulate was first formulated by Galileo Galilei (see Galilean invariance).