Search results
Results from the WOW.Com Content Network
The fidelity between two quantum states and , expressed as density matrices, is commonly defined as: [1] [2] (,) = ().The square roots in this expression are well-defined because both and are positive semidefinite matrices, and the square root of a positive semidefinite matrix is defined via the spectral theorem.
In quantum mechanics, and especially quantum information and the study of open quantum systems, the trace distance is a metric on the space of density matrices and gives a measure of the distinguishability between two states. It is the quantum generalization of the Kolmogorov distance for classical probability distributions.
A related concept is the quantum metrological gain, which for a given Hamiltonian is defined as the ratio of the quantum Fisher information of a state and the maximum of the quantum Fisher information for the same Hamiltonian for separable states
The state of ion 1 is prepared arbitrarily. The quantum states of ions 1 and 2 are measured by illuminating them with light at a specific wavelength. The obtained fidelities for this experiment ranged between 73% and 76%. This is larger than the maximum possible average fidelity of 66.7% that can be obtained using completely classical resources ...
Similarly, quantum states consist of sets of dynamical variables that evolve under equations of motion. However, the values derived from quantum states are complex numbers, quantized, limited by uncertainty relations, [1]: 159 and only provide a probability distribution for the outcomes for a system. These constraints alter the nature of ...
In mathematics, in the area of quantum information geometry, the Bures metric (named after Donald Bures) [1] or Helstrom metric (named after Carl W. Helstrom) [2] defines an infinitesimal distance between density matrix operators defining quantum states. It is a quantum generalization of the Fisher information metric, and is identical to the ...
The IPR basically takes the full information about a quantum system (the wave function; for a -dimensional Hilbert space one would have to store values, the components of the wave function) and compresses it into one single number that then only contains some information about the localization properties of the state.
One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.