Search results
Results from the WOW.Com Content Network
The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...
An example string would be "abcbpbcbp" where the "Old" palindrome is "bcbpbcb" and the Center is on the second "c". The MirroredCenter is the first "c" and it has a longest palindrome of "bcb". The longest palindrome at the Center on the second "c" has to be at least that long and, in this case, is longer.
Primary applications include: [25] String search, in O(m) complexity, where m is the length of the sub-string (but with initial O(n) time required to build the suffix tree for the string) Finding the longest repeated substring; Finding the longest common substring; Finding the longest palindrome in a string
Comparison of two revisions of an example file, based on their longest common subsequence (black) A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences).
A string is a substring (or factor) [1] of a string if there exists two strings and such that =.In particular, the empty string is a substring of every string. Example: The string = ana is equal to substrings (and subsequences) of = banana at two different offsets:
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
It is a simplification of the Boyer–Moore string-search algorithm which is related to the Knuth–Morris–Pratt algorithm. The algorithm trades space for time in order to obtain an average-case complexity of O(n) on random text, although it has O(nm) in the worst case, where the length of the pattern is m and the length of the search string ...
It is thus well-suited for applications in which the pattern is much shorter than the text or where it persists across multiple searches. The Boyer–Moore algorithm uses information gathered during the preprocess step to skip sections of the text, resulting in a lower constant factor than many other string search algorithms.