enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phosphodiester bond - Wikipedia

    en.wikipedia.org/wiki/Phosphodiester_bond

    In the phosphodiester bonds of nucleic acids, a phosphate is attached to the 5' carbon of one nucleoside and to the 3' carbon of the adjacent nucleoside. Specifically, it is the phosphodiester bonds that link the 3' carbon atom of one sugar molecule and the 5' carbon atom of another (hence the name 3', 5' phosphodiester linkage used with ...

  3. DNA-binding protein - Wikipedia

    en.wikipedia.org/wiki/DNA-binding_protein

    DNA-binding proteins can incorporate such domains as the zinc finger, the helix-turn-helix, and the leucine zipper (among many others) that facilitate binding to nucleic acid. There are also more unusual examples such as transcription activator like effectors.

  4. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    The primary structure of a protein is reported starting from the amino N-terminus to the carboxyl C-terminus, while the primary structure of DNA or RNA molecule is known as the nucleic acid sequence reported from the 5' end to the 3' end. The nucleic acid sequence refers to the exact sequence of nucleotides that comprise the whole molecule.

  5. Nucleoprotein - Wikipedia

    en.wikipedia.org/wiki/Nucleoprotein

    Lysine residues in the helical portion of RNA-binding proteins help to stabilize interactions with nucleic acids. This nucleic acid binding is strengthened by electrostatic attraction between the positive lysine side chains and the negative nucleic acid phosphate backbones. Additionally, it is possible to model RNPs computationally. [25]

  6. Genetic code - Wikipedia

    en.wikipedia.org/wiki/Genetic_code

    Efforts to understand how proteins are encoded began after DNA's structure was discovered in 1953. The key discoverers, English biophysicist Francis Crick and American biologist James Watson, working together at the Cavendish Laboratory of the University of Cambridge, hypothesied that information flows from DNA and that there is a link between DNA and proteins. [2]

  7. Central dogma of molecular biology - Wikipedia

    en.wikipedia.org/wiki/Central_dogma_of_molecular...

    It states that such information cannot be transferred back from protein to either protein or nucleic acid." [6] A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965).

  8. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...

  9. Nucleoside triphosphate - Wikipedia

    en.wikipedia.org/wiki/Nucleoside_triphosphate

    Nucleic acid synthesis is catalyzed by either DNA polymerase or RNA polymerase for DNA and RNA synthesis respectively. [16] These enzymes covalently link the free -OH group on the 3’ carbon of a growing chain of nucleotides to the α-phosphate on the 5’ carbon of the next (d)NTP, releasing the β- and γ-phosphate groups as pyrophosphate ...