enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric field - Wikipedia

    en.wikipedia.org/wiki/Electric_field

    This means that if the source charge were doubled, the electric field would double, and if you move twice as far away from the source, the field at that point would be only one-quarter its original strength. The electric field can be visualized with a set of lines whose direction at each point is the same as those of the field, a concept ...

  3. Field strength - Wikipedia

    en.wikipedia.org/wiki/Field_strength

    In physics, field strength is the magnitude of a vector-valued field (e.g., in volts per meter, V/m, for an electric field E). [1] For example, an electromagnetic field has both electric field strength and magnetic field strength .

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport

  5. Electromagnetic tensor - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_tensor

    The matrix form of the field tensor yields the following properties: [3] Antisymmetry: = Six independent components: In Cartesian coordinates, these are simply the three spatial components of the electric field (E x, E y, E z) and magnetic field (B x, B y, B z).

  6. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the ...

  7. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.

  8. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    citation needed] Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone, since Coulomb's law gives the electric field due to an individual, electrostatic point charge only. However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the electric field obeys the superposition principle. The ...

  9. Paschen's law - Wikipedia

    en.wikipedia.org/wiki/Paschen's_law

    The intensity of the electric field for this gap is therefore 3.4 MV/m. The electric field needed to arc across the minimal-voltage gap is much greater than what is necessary to arc a gap of one metre. At large gaps (or large pd) Paschen's Law is known to fail. The Meek Criteria for breakdown is usually used for large gaps.