Search results
Results from the WOW.Com Content Network
This means that if the source charge were doubled, the electric field would double, and if you move twice as far away from the source, the field at that point would be only one-quarter its original strength. The electric field can be visualized with a set of lines whose direction at each point is the same as those of the field, a concept ...
In physics, field strength is the magnitude of a vector-valued field (e.g., in volts per meter, V/m, for an electric field E). [1] For example, an electromagnetic field has both electric field strength and magnetic field strength .
electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric susceptibility (dimensionless) 1 1 p ...
In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.
A root-power quantity is a quantity such as voltage, current, sound pressure, electric field strength, speed, or charge density, the square of which, in linear systems, is proportional to power. [3] The term root-power quantity refers to the square root that relates these quantities to power.
Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the ...
The electric field strength at a specific point can be determined from the power delivered to the transmitting antenna, its geometry and radiation resistance. Consider the case of a center-fed half-wave dipole antenna in free space, where the total length L is equal to one half wavelength (λ/2).
Over a flat field on a day with clear skies, the atmospheric potential gradient is approximately 120 V/m. [18] Objects protruding these fields, e.g. flowers and trees, can increase the electric field strength to several kilovolts per meter. [19]