Search results
Results from the WOW.Com Content Network
This means that if the source charge were doubled, the electric field would double, and if you move twice as far away from the source, the field at that point would be only one-quarter its original strength. The electric field can be visualized with a set of lines whose direction at each point is the same as those of the field, a concept ...
In physics, field strength is the magnitude of a vector-valued field (e.g., in volts per meter, V/m, for an electric field E). [1] For example, an electromagnetic field has both electric field strength and magnetic field strength .
Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of the electric field, and is proportional to the total charge enclosed by the surface. Here, the ...
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.
electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric susceptibility (dimensionless) 1 1 p ...
If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be ...
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime.