Search results
Results from the WOW.Com Content Network
The ampacity of a conductor, that is, the amount of current it can carry, is related to its electrical resistance: a lower-resistance conductor can carry a larger value of current. The resistance, in turn, is determined by the material the conductor is made from (as described above) and the conductor's size.
Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. [1] [2] The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor. [3] Copper is the electrical conductor in many categories of electrical wiring.
Copper is used as a conductor of heat and electricity, as a building material, and as a constituent of various metal alloys, such as sterling silver used in jewelry, cupronickel used to make marine hardware and coins, and constantan used in strain gauges and thermocouples for temperature measurement.
Electrical conductivity (or specific conductance) is the reciprocal of electrical resistivity. It represents a material's ability to conduct electric current. It is commonly signified by the Greek letter σ , but κ (especially in electrical engineering) [citation needed] and γ [citation needed] are sometimes used.
where is the length of the conductor, measured in metres (m), A is the cross-sectional area of the conductor measured in square metres (m 2), σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω ...
These ions are good conductors of electric current in the solution. Originally, a "strong electrolyte" was defined as a chemical compound that, when in aqueous solution, is a good conductor of electricity. With a greater understanding of the properties of ions in solution, its definition was replaced by the present one.
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Graphite is an electrical conductor, hence useful in such applications as arc lamp electrodes. It can conduct electricity due to the vast electron delocalization within the carbon layers (a phenomenon called aromaticity). These valence electrons are free to move, so are able to conduct electricity.